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Abstract. We consider an O(n)-invariant continuum model of a ferromagnet in d 
dimensions with quenched temperature-like disorder and determine the domain of the 
Griffiths phase in t e r m s  of the parameters of this model. Using the Omstein-Zemike 
approximation with respect to thermal fluctuations we investigate the temperature 
region above theupper boundary of this domain (T 2 TG) for a boundcddistribution 
of disorder, and work out the connection with the corresponding Lifrbitz problem. 
Using different assumptions for the disorder we give an expression for the Griffiths 
sinylar part of the free energy and show that an essential singularity develops in the 
limit T I To in  zero magnetic field. 

1. Introduction 

Although known for many years, the status of Griffiths singularities is still unsatisfac- 
tory [l]. There are two main reasons why neither theoretical work has given testable 
predictions, apart from a few exceptions, nor any experiment has been done on this 
subject so far. 

The first reason concerns the poor observability of these singularities. While Grif- 
fiths in his original work only proved the existence of singularities in a temperature 
interval T, < T 5 TG above the critical temperature of a random ferromagnet it later 
became clear that the non-analyticities were merely essential singularities. Thus as 
far as static quantities are concerned there is no point in looking for the singularities 
experimentally [2]. An investigation of the dynamic effects, on the other hand, offers 
a more promising route for experimentalists. The reason is that Griffiths singularities 
manifest themselves by the appearance of a non-exponential decay of autocorrelation 
functions, which is slower than the usual exponential decay in regular paramagnetic 
systems [3-51. However, suitable experiments have not yet been done. 

The second reason concerns the bheoretical efforts. In Griffiths singularities, which 
are typically non-perturhative phenomena, powerful tools similar, for example, to the 
renormalization group approach to critical phenomena have not yet been developed, 
There are indeed numerous papers on the subject: papers using heuristic arguments 
[4, 51 or giving exact solutions for the one-dimensional king model [6] and other special 
models [7,8], applying instanton techniques [9, 101 or making use of rigorous methods 
[ll]. However, few, if any, give explirit results for the form of the Griffiths singularity. 

In an early paper Harris [Z] pointed out  the qualitative similarity of the Griffiths 
phase to the occurrence of Lifshitz band tails in disordered electronic systems both 
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of which are caused by the existence of arbitrarily large, though rare, regions with- 
out disorder. Very recently Nieuwenhuizen [12] considered the two-dimensional king 
model with an anisotropic form for the coupling disorder and he succeeded in finding 
an explicit relationship between the free energy in a zero magnetic field and the density 
of states, in particular the Lifshitz tail, of the corresponding electronic system. 

In this paper we elaborate on this connection for a general class of continuum mod- 
els, namely models of the Ginzhurg-Landau type with an n-component order parame- 
ter field and an O(n)-invariant Hamiltonian, which are well known from the investiga- 
tion of critical phenomena. Such models with quenched temperature-like disorder are 
well established for the description of critical phenomena in disordered systems where 
the disorder variable is usually assumed to have a Gaussian distribution-deviations 
being irrelevant perturbations in the renormalization group sense (for a review of crit- 
ical behaviour in disordered systems and an extensive list of references see [13]; and 
[14] and [IS]). In section 2 we will examine this and other assumptions on the dis- 
order to distinguish between important and less important properties characterizing 
the disorder. Furthermore we restrict ourselves to Gaussian thermal fluctuations and 
to temperatures T above the Griffiths temperature. The latter restriction aims to 
extract the Griffiths singularity of the free energy at  T, in zero magnetic field as 
a function of T - TG. The former restriction, the Ornstein-Zernike approximation, 
allows us to derive an explicit relationship between the free energy and the density 
of states of the corresponding Lifshitz problem (section 3). Section 4 serves to recall 
some facts ahont Lifshitz behaviour and gives the typical form for Lifshitz hand tails. 
Exploiting this we show in section 5 that  the free energy has an essential singularity 
in  the limit T \ TG. The final section contains a brief summary of our findings and 
some concluding remarks. 

2. Model 

We consider a model defined by the reduced Hamiltonian 

X = / d d z  { :(V+)’ + ~ T ( Z ) + ~  1 + i(+2)2} 
where U > 0, while 4 = (+,, . . . ,&) is an n-component order parameter field, and 
the range of integration extends over the whole Rd. The function r ( z )  is a stochastic 
field representing a kind of locally fluctuating critical temperature, This can be easily 
seen in the mean field approximation by recalling the familiar relationship T 0: T - T, 
for pure systems near criticality which may he transferred to the present case as 

T ( 2 )  Lx T - TJZ)  (2.2) 

To determine the properties of T ( Z )  i t  is helpful t,o imagine our model (2.1) as a 
model of dilute ferromagnet. According to Grifiths’s original considerations [l] the 
upper temperature bound for the appearance of singularities, the so-called Griffiths 
temperature TG, is given by the critical temperature of the pure system. To he more 
precise, consider a lattice model of a ferromagnet with random nearest-neighhour 
couplings Ji j  which are positive and independent, identically distributed according to 
a distribution P ( J i j ) .  The pure system is then, by definition, that one for which all 
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J i j  take on their maximal value allowed by P ,  In other words: T, is the maximal 
critical temperature compatible with Pt.  This implies that for T, to be finite the 
supremum of the support of P (sup supp P ) ,  the maximal value of J i j ,  has to he finite 
[5]. From (2.2) we conclude that, for our continuum model (2.1), a finite TG requires 
a distribution f o r  r ( z )  bounded f r o m  below. (Note that a Gaussian distribution is thus 
excluded!) Therefore, without loss of generality, we may write 

r ( z )  = r + 6r(z) 6 r ( z )  2 0. (2.3) 

In addition we also assume the support of 6 7  l o  be bounded f r o m  above. On the other 
hand we are interested in systems which are still translationally invariant-in the 
mean. So &(z) has to be identically distributed f o r  all 2: E Kid. For the present we 
will not specify the properties of the stochastic field 6r in more detail and come back 
to it later. 

From this it is clear that the Griffiths temperature TG corresponds to rG = 0 + 
O(U). The actual critical temperature of the infinite system, rc, consequently is located 
at a negative value of r : T~ < Of .  Note that the existence of an upper bound for 6r(z)  
implies the existence of a critical temperature (rc > -sup supp 67). Thus our model 
cannot describe phenomena below the percolation threshold of the originally diluted 
ferromagnet. But since we are going to investigate the behaviour near T, this should 
not matter. However, the interval rC < 7 5 rG is usually called the ‘Griffiths phase’. 
In the space of temperature r and magnetic field H the set {rc < T 5 T ~ ;  H = 0) is 
the line of Griffiths singularities. Especially in  the limit H = 0, r \ rG, we expect the 
thermodynamic quantities to exhibit essential singular behaviour, as will be proved 
later$ 

For the following we will confine ourselves to the Orustein-Zernike approximation 
(‘mean field theory’ with respect to the thermal fluctuations). Hence we set U = 0 for 
the future and obtain, as a consequence, T, = 0. In addition we will concentrate on 
the case r 2 0 and obtain an essential singularity in the free energy in the previously 
mentioned limit, r \ 0 (and H = 0). The Hamiltonian of our (Gaussian) model can 
now be rewritten as 

(2.4) 

with (p, $) := Jddzp(z)$(z) and the inverse propagator 

G;’ := -A + r + 6 r ( z )  (2.5) 

t Note that, nevertheless, an infinite disordered system has, if at all, a unique critical temperature 
T, depending on P ,  but ‘almost surely’ independent of the realization. TI& is due to the fact that 
the free energy is a self-averaging quantity (see also [16, 171). 
t Other examples of Griffitho sirigularitier in the temperature field are to be found in [7] and [IZ]. 
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3. Free energy and Lifsliita tails 

The reduced free energy per unit volume is 

1 Fo = -~lnTrgexp[-'Ho{q5}] 

Neglecting a trivial additional constant we immediately arrive at  

n F - - Indet G;' 
O -  2 v  

n -- - 2vTrlnG;'. 

Here, in mean field theory and above Tc the n degrees of freedom of the vector spins 
are completely decoupled and show up in a factor n in front of the free energy. In the 
thermodynamic limit the trace can be replaced by an integral with measure Vp,(p)dp 
where po(p)  is the density of states per unit volume of the operator G;' given in 
(2.5)t. For the non-trivial part of the free energy density we thus get 

(3.3) 

Here we have introduced a cutoff A to regularize the theoryt. From (3.3) we see 
that the Griffiths problem can be traced back to the calculation of the density of 
states po(p) of (2;'. But G;' may be interpreted as a Hamiltonian operator of a 
disordered electronic system (in tlie one-particle approximation) characterized by the 
stochastic potential V(z) = T + 67(2). Thus (3.3) shows that the Grifiths problem 
in the mean field approzimation at Tc is equivalent to the Lifshitz problem for the 
Hamiltonian operator (2.5)3 analogously to the corresponding results on the diluted 
two-dimensional Ising model [ lo ,  121. 

4. General form of Lifshitz tails 

Since Lifshitz's original paper in 1964 [I81 a lot of work has been done to determine 
the density of states for different models and diverse kinds of stochastic potentials (see 
e.g. [19, 201 and references therein). From these numerous papers we will choose a 
few examples to crystallize the form of the essential singularity appearing in Fo for 
T \ Tc. From a mathematical point of view it is (because of questions of existence; 
for a review of the mathematics see [21]) more convenient not to consider the density 
of states pa()') but the integrated density of states defined by 

Z o ( p )  = lim -#{eigenstates of G& with eigenvalue f i  5 p }  (4.1) 
I 

L-m L d  

t Expressed in terms of tlie imaginary part of the Green function the density of states reads: p o ( w )  = 
n-'hiTr[G~' - - For another definition see section 4 .  
$ A s  usual in the field-theoretical treatment of statistical mechanics the necessity of an ultraviolet 
cutoff to obtain well defined physical quantities reflects the existence of a microscopic length-scde a. 
Therefore one may set A = a-z, 
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where G',Z,,, is the Hamiltonian (2.5) restricted to a cube of size Ld with some 
boundary conditions 'bc'. In many cases it is possible to prove rigorously the existence 
of Zo(p) and its independence of the boundary conditions [XI. The relationship 
between & ( p )  and po(p)  (if po exists) is given by po(p)  = dZo(p)/d(p) = Zh(p). 

Different assumptions abut the stochastic potential 6r(z)  may lead (or may not 
lead) to different expressions for the Lifshitz tail, i.e. the essential singularity appearing 
in the (integrated) density of states Zo(p) at  the lower edge of the spectrum, r. But 
the leading asymptotic behaviour of Zo(p) for p \ r can be written in the general 
form 

with suitable constants K , C  > 0 and s 2 0. This will be illustrated later. Prefac- 
tors depending algebraically on ( p  - r )  may be understood as additive logarithmic 
corrections in the exponent and are therefore omitted. 

Surveying the literature we find a variety of investigated models leading to different 
values for { and S. Our aim in the remainder of the section is to give a classification of 
the models with regard to these exponents. To do this, we have to distinguish between 
unimportant details of the models, which do not affect the asymptotic behaviour, and 
important properties, determining C and s. Accordingly we distinguish 'technical' 
aspects from 'physical' ones. To be more precise we introduce two classes of models, 
namely: 

(A) models with a stochastic field 6r which is induced by a countable set of 'pri- 
mary'sfochasfic variables and can be written as 

6r(z )  = q i f ( z  - i) 
icZ" 

(4.3) 

where the qi 2 0 are stochastic variables to be specified later and f(z) 2 0, z E Rd; 
(B) models not reducible to a countable set of stochastic variables. Thus they are 

characterized by the stochastic properties of S T ( Z )  itself - as the primary stochastic 
variables. 

This distinction between ( A )  and (B) is what we call different 'technical' aspects 
and there are some indications [18-211 that the asymptotic singular behaviour in  the 
limit p \ r does not depend on these differences. Concerning the 'physical' aspects 
there are, a t  least, two factors which affect the Lifshitz tails, i.e. the exponents C and 
s in (4.2): 

(I) The range of correlations of disorder which may be characterized by the 
cumulant 

C(z - 2') = [6~(z)Sr(z')]~~ - [6r(~)]:~ 

where [.I, is the expectation value with respect to the distribution of 6r. Note that 
[ 6 r ( ~ ) ] ~ ~  is a position-independent quantity due to the translational invariance of the 
distribution of 6r (see above). Now we distinguish between 

( a )  short-range correlations: C(z) 5 cllzI-" for a > d +  2,c, > 0 and 

( p )  long-range correlations : C(z) - 1zI-O for 121 -+ 00, d < a 5 d + 2. 
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Another familiar kind of disorder is given by the 'white noise' case i.e. C(z) o( 
S ( 2 ) .  From work on Gaussian distributed disorder one finds that this delta-correlated 
disorder behaves qualitatively different from short-range correlated disorder (a)t .  We 
thus expect this also to be true in our case of a bounded support of 6r. In the following 
we do not consider white noise disorder any further. 

(11) The d i s f r ibuf ion  of the priniary stochastic variables near i ts  lower edge. Let 
us specify the following three cases using a model of type A. 

(i) The primary stochastic variables q; take their lowest value (q; = 0) with f ini te  
probabilify (# 0): Prob(qi = 0) > 0. The probability density p, of qi thus contains 
a delta function 6(q) .  This case is realized, for instance, in models with a discrete 
distribution of the p i .  

(ii) The distribution of primary stochastic variables exhibits power  law behaviour: 
Prob(qi 5 6) - €7 for 6 -+ 0, y > 0. That means that the probability density p, of 
the pi behaves like p,(q) - q7-I for q --t 0. 

(iii) The distribution of the primary stochastic variables exhibits an ezponenfial  
behaviour near fhe  lower edge: Prob(q; 5 e )  - exp{-Bc-p} for 6 + 0, B,P > 0. 
In terms of the probability density we thus have: p,(q) U exp{-Bq-o} for q -t 0, 
neglecting an algebraic prefactor. 

I t  is not difficult to formulate conditions in analogy to (i)-(iii) for models with an 
accountable set of primary stochastic variables (type B). 

Now we are in a position to give some examples for the exponents C and s deter- 

(cr, i) Shod-range correlations and finite probability of the primary stochastic vari- 

mining the asymptotic behaviour of the Lifshitz tail (4.2). 

ables to take their lowest value: 

C = d / 2  s = O .  (4.4) 

For type A models this can be proved rigorously [24]. The condition of short-range 
(a) is fulfilled if the shape function f (z)  (see (4.3)) decays like IzI-", a 2 d+2 .  There 
are related models with a countable set of primary stochastic variables such as the 
so-called Poisson model [21] or lattice models [ a O ,  251 showing behaviour (4.2) with 
the same exponents (4.4). The treatment of type B models is mathematically more 
involved. Here the condition of short-range correlations has to be expressed in terms of 
a 'pmixing condition' of the stochastic field h ( z )  - for details see [24,26]. However, 
the corresponding results are compatible with (4.4) [24]. 

(a, ii) Shorf-range correlations and power  law behaviour of the primary stochastic 
variables: 

Both type A models and similar models previously mentioned yield the asymptotic 
Lifshitz behaviour given by (4.2) and (4.5) [19, 21, 271. For type B models, on the 
other hand, the known rigorous results are not strong enough to prove s = I ,  but they 
are a t  least consistent with (4.5) [24]. 

t For Gaussian disorder the LiIsliits tails liave asymptolically, for E + -m, the form p ( E )  - 
exp{-constant x E=),  where I = 2 - d / z  in  the w h i t e  noise case, while 2. = 2 for short-range 
correlations [21-23]. 
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(a, iii) Short-range correlations and exponential behaviour of the primary stochas- 
tic variables: 

{ = d / 2 + P  s = O .  (4.6) 

Concerning this exponential behaviour of the distribution of the primary stochastic 
variables only a paper treating a lattice model is known to the author [19]. But it 

in cases 
( a ,  i) and (a, ii). 

(0, ii) Long-range correlations and power law behaviour of the primary stochastic 
variables: 

seems p!ausih!e th6.t the ypsu!tg are *!so y.!id for continuum mod& jug? 

s =  1. (4.7) 
d 

a - d  
{ = -  

A rigorous proof of (4.7) is available for type A models [24, 281 

Table 1. Exponents { and s of Lifsliitz tails (4.2) depending on the range of correla- 
tions of disorder and the distributioii of the primary stochastic variables. For furtber 
explanation see main text. 

s\( ( i )  ( i i)  (iii) 

T*b!c 1 sllmmarizes the findings of this sedan. &eg (0; i) and (Pi iii) may 
behave in analogy to ( a ,  i) and (a, iii), respectively. However, so far there have been 
no results on such models. 

5. An essent ia l  singularity 

So far we have dealt with the integrated density of states Z&) for arbitrary r 2 0 
and given some examples suggesting the general form (4.2) in the limit f i  \ r. This 
implies the asymptotic form of the density of states itself. 

where we have again neglected the algebraic and logarithmic prefactors. It is this 
essential singularity in p,(p)  which generates, via (3.3), the (essential) Griffiths singu- 
larity in the free energy density Fo(r)  when T approaches the Griffiths temperature 
Tc i.e. r \ 0. 

To see this we split from Fo the singular part and write 

where po > r is an arbitrary cutoff and Q takes into account the possible algebraic 
or/and logarithmic prefactors neglected so far. In other words: d(x) may he a sum of 
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terms of the form A,z'"(log z)"" with appropriate real nnmbers A,, b, and cy. In what 
follows we want to  consider a typical contribution to the Griffiths singularity and, thus, 
confine ourselves to  the treatment of one such term, i.e. we set g(z) = Az'(1ogz)'. 
After a shift of the integration variable / I  + p - r  and neglecting the thereby emerging 
r-dependence of the upper boundary of integration (a regular Contribution to  3J this 
part of the free energy density reads 

1 . r p a .  . . 
Fo(rj = InAJa d p  In(p + r)~'(inpj"xp{-klinpj"lr-ij. (5.3) 

Next we show that the radius of convergence R of a Taylor series of ?,(r) in r 
around r = 0 is zero. For a power series C,a,z" this radius is given by R = 
limv+m ~ a v ~ / ~ a v t l ~  [29]. The coefficients ay of the desired Taylor expansion yo are 

Using a generalized Laplace method for integrals of the type Jdtg( t )exp{h(l , r )}  in 
the limit z - m [30] we evaluate laYl in the limit Y i 00 and obtain to  leading order 
in U: 

Here p, is the u-dependent point where the integrand of (5.4) takes its maximum 
value and is implicitly given by the equation 

Unfortunately this is a transcendental equation. Thus we cannot solve it for p , .  But 
it is IaV/a,+,l not (a,( itself in which we are interested. To get the limiting behaviour 
of la,/a,+ll for Y - M we define the functions N ( & )  := U according to  (5.6) and its 
inversion M ( v )  :=&,such  that N ( M ( r ) )  I z, and expand = M(Y+ 1) around 
U. Expressing derivatives of M in terms of the function N we arrive at 

pVt1 = ji, + [N'(p , ] - '  - [N'(,L?,)]-~N''(,~I,) +. . . 

[ N ' ( ~ , ) I - '  = - C - I ~ { I +  o ( u - ] ( -  l n p p ) s - ' p ; c ) }  

(5.7) 

with 

U 

[N'(P,)l-3N"(ir,) = O(il,/u2) 

Using these results one can show that 

R = lim 1a,/11,+~1 = 0 
Y - m  
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for arbitrary K ,  { > 0,s 2 0, and A ,  b ,  c E R, On the other side (5.3) and (5.4) show 
that Fo(r = 0) as well as all its derivatives with respect to 7 exist a t  r = 0 and are 
finite. Thus we conclude that i h e  free energy density has an essential singulariiy at 
r = O .  

Finally we give one particular example for which the coefficients ay can be given 
explicitly, namely 

P O  1 
2 Fo = - n A l  d p  In(/‘+ r)p-*exp{-n/p} 

(5.9) 
= -~nA~-’exp{K/r)Ei(-K/r) + reg. terms 

which corresponds to the case b = -2, c = 0, s = 0, { = -1. Here Ei(z) is the 
exponential integral function [31] and ‘reg. terms’ means terms which are regular for 
r \ 0. The asymptotic expansion of Ei(2:) for 2: + m is [31] 

(5.10) 

where IR,(z)I < n!lzl”-’. Inserting this into (5.9) we get the desired asymptotic 
series Yo = E, 6,r” with 

6, = $nA(v  - l)!(-n)-”-’ (5.11) 

in agreement with (5.5) and (5.6). 

6. Summary and out look  

The purpose of this paper has been to obtain some insight into the connection between 
Griffiths singularities in disordered systems like ferromagnets and Lifshitz band tails 
of the corresponding disordered quantum systems. To this end we considered the 
standard Ginzburg-Landau model (2.1). Using the Ornstein-Zernike approximation 
with respect to thermal fluctuations we gave the analytical expression for the free 
energy (3.3) as a functional of the density of states of a related Hamiltonian operator 
(2.5). Due to disorder the density of states ends in a Lifshitz tail which eventually 
produces the Griffiths singularity of the free energy. We emphasize here that this type 
of consideration avoids any approximation or dodge, like the replica trick, regarding 
disorder. A short synopsis of different kinds of disorder helped us to determine the 
generic form of the Lifshitz band tails (see (4.2) and (5.1)) depending mainly on two 
exponents, { and s (see table 1) .  For general { and s we were able to show that 
this form of Lifshitz tails induces an essential singularity in the free energy, if the 
temperature approaches the Grifiths temperature (T \ Tc). 

Finally let us remark on two desirable extensions: (i) the temperature region 
T, < T < Tc; and (ii) the inclusion of higher thermal fluctuations. 

(i) Concerning the first topic there are, a t  least, two points that have to be noted. 
On the one hand it is necessary to introduce a magnetic field H since the line H = 0, 
T, < T < Tc is a line of singular points of the free energy [l,  121. Consequently the 
Griffiths singularities emerge for vanishing H .  On the other hand a stability problem 
arises in the naive Ornstein-Zernike approximation. To see this consider the inverse 
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propagator G,;,,, for 7 < 0, i.e. the operator generalizing G;,i,b, (see (2.5) and (4.1)). 
G-1 L,be has to be positive definite, even in the limit H -+ 0. However there are clearly 
realizations of disorder such that 6r(1) + r is negative for arbitrarily large regions 
in  space. To stabilize the system one has to look for a new saddle-point solution of 
the full +4-theory (2,l). The result for a finite system of size L is a function ML(z) 
depending on the realization {6r(z)} .  M L ( z ,  {6r)) is, in a sense, a local ‘spontaneous 
magnetization’ giving a typical (i.e. the most probable) contributioa to the partition 
integral. I t  has to be carefully distinguished from the thermal expectation value of the 
magnetization, which vanishes in any finite system. This ‘magnetization’ M L ( z ,  { S T } )  
leads to a positive definite inverse propagator 

U 
G;,i,bc = c , i , ~ c  + ( iMZ( I ) .  (6.1) 

In other words: below Tc there exist regions show the characteristics of a ‘ferromag- 
netic phase’. This happens although the infinite system is not in the ferromagnetic 
phase and thus has vanishing total magnetization. How to handle this ‘magnetization’ 
M L ( z ,  {6r)) to obtain the ‘Lifshitz tail’ of ( G . 1 )  for L - M is still an open question. 

(ii) Another aim would be to go beyond mean field theory. Let us  turn first to the 
(integrated) density of states Z(p) of the exact inverse propagator G-’ including all 
thermal fluctuations neglected so far. From the proofs of behaviour (4.2), especially 
the evaluation of C(= d/2, for all ‘short-range models’ (a, i-iii)), we can extract two 
main ingredients [20, 211: 

(a) the probability of large deviations from the mean is proportional to 
exp{-constant x L‘}; and 

(b) the scaling behaviour of thc low-lying cigenvalues of is given by p - 
L-2. 

Including thermal fluctuations does not affect (a) but leads to a modified scaling 
behaviour in (h) such that p - L-’/”. This can be seen by considering a heuris- 
tic argument given by Bray [4]. The lowest-lying eigenvalues of G-’ correspond to 
localized states located near large pure clusters, i.e. regions without (or with little) 
disorder, of typical size L. A corresponding ground-state eigenvalue p of G-’ behaves 
as afunction of L like the inverse susceptibility x;’ of that cluster. Using the familiar 
finite size scaling [32] x L  - L’/’ we end up with the suggested scaling form p ( L ) .  
After substitution of (b) by this scaling form p - L-71“ and exploiting the scaling law 
y = v(2 - 7) we obtain the asymptotic behaviour of the integrated density of states 
for short-range correlated disorder: 

~ ( p )  - exp{-constant x (11 - ~)4(’-“)) (6.2) 
for p \ rt. Notice that in the mean field approximation 11 = 0, so that the old 
(Lifshitz) result is reproduced. 

A second step had to be an instruction as to how to improve the mean field 
expression for the free energy (3.3). The idea of replacing the mean field density of 
states po(p) in (3.3) by the exact one p ( p )  corresponding to Z(p)  (6.2) does not yield 
an improved expression for 3, not even in the lowest order in the coupling constant U as 
can be easily seen perturbatively. However, it may be true that l d p p ( p ) I n p  delivers 
the correct leading essentially singular behaviour of the thermodynamic quantities for 
T \ Tc, leaving a more satisfying treatment of the thermal fluctuations as a task for 
further investigations. 

t Here we have not worried about logaritluuuc terms such as l h ( w  - .)Is. 
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